牵引逆变器是电动汽车 (EV) 中消耗电池电量的主要零部件,功率级别可达 150kW 或更高。牵引逆变器的效率和性能直接影响电动汽车单次充电后的行驶里程。因此,为了构建下一代牵引逆变器系统,业界广泛采用碳化硅 (SiC) 场效应晶体管 (FET) 来实现更高的可靠性、效率和功率密度。 图 1 所示的隔离式栅极驱动器集成电路 (IC) 提供从低电压到高电压(输入到输出)的电隔离,驱动逆变器每相的高边和低边功率模块,并监测和保护逆变器免受各种故障的影响。根据汽车安全完整性等级 (ASIL) 功能安全要求,栅极驱动器 IC 必须符合 ISO 26262 标准,确保对单一故障和潜在故障的故障检测率分别为 ≥99% 和 ≥90%。 在本文中,我们将重点介绍实时可变栅极驱动强度的技术优势,这项新功能可让设计人员优化系统参数,例如效率(影响电动汽车行驶里程)和 SiC 过冲(影响可靠性)。 通过实时可变栅极驱动强度提高效率 栅极驱动器 IC 必须尽可能高效地导通 SiC FET,同时尽可能降低开关损耗。控制和改变栅极驱动电流强度的能力可降低开关损耗,但代价是在开关期间增加了开关节点处的瞬态过冲。改变栅极驱动电流可控制 SiC 的开关速度,如图 2 所示。 栅极驱动电流的实时可变功能可实现瞬态过冲管理以及整个高电压电池能量周期的设计优化。充满电且荷电状态为 100% 至 80% 的电池应使用较低栅极驱动强度,将 SiC 电压过冲保持在限制范围内。随着电池电量从 80% 降至 20%,采用较高栅极驱动强度可降低开关损耗并提高牵引逆变器效率,在充电周期 75% 的时间内都属于这种情况,因此对系统效率的提升非常明显。图 3 展示了典型的瞬态过冲与电池峰值电压和电量状态的关系。 UCC5880-Q1 是一款最大 20A 的 SiC 栅极驱动器,具有多种保护功能,适用于汽车应用中的牵引逆变器。其栅极驱动强度介于 5A 至 20A 之间,并且可通过一个 4MHz 双向串行外设接口 SPI 总线或三个数字输入引脚进行调整。图 4 展示了实现可变栅极驱动强度的双分离输出的实现方案。 评估牵引逆变器功率级开关性能的标准方法是双脉冲测试 (DPT),它可以在不同电流下闭合和断开 SiC 功率开关。通过改变开关时间,可以控制和测量工作条件下的 SiC 开启和关断波形,从而有助于评估效率和 SiC 过冲,后者会影响可靠性。图 5 展示了 UCC5880-Q1 低边 DPT 设置的可变强度栅极驱动器和 SiC 半桥的连接图。
|